153 research outputs found

    Poisson inverse problems

    Get PDF
    In this paper we focus on nonparametric estimators in inverse problems for Poisson processes involving the use of wavelet decompositions. Adopting an adaptive wavelet Galerkin discretization, we find that our method combines the well-known theoretical advantages of wavelet--vaguelette decompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, together with the remarkably simple closed-form expressions of Galerkin inversion methods. Adapting the results of Barron and Sheu [Ann. Statist. 19 (1991) 1347--1369] to the context of log-intensity functions approximated by wavelet series with the use of the Kullback--Leibler distance between two point processes, we also present an asymptotic analysis of convergence rates that justifies our approach. In order to shed some light on the theoretical results obtained and to examine the accuracy of our estimates in finite samples, we illustrate our method by the analysis of some simulated examples.Comment: Published at http://dx.doi.org/10.1214/009053606000000687 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Wavelet methods in statistics: Some recent developments and their applications

    Full text link
    The development of wavelet theory has in recent years spawned applications in signal processing, in fast algorithms for integral transforms, and in image and function representation methods. This last application has stimulated interest in wavelet applications to statistics and to the analysis of experimental data, with many successes in the efficient analysis, processing, and compression of noisy signals and images. This is a selective review article that attempts to synthesize some recent work on ``nonlinear'' wavelet methods in nonparametric curve estimation and their role on a variety of applications. After a short introduction to wavelet theory, we discuss in detail several wavelet shrinkage and wavelet thresholding estimators, scattered in the literature and developed, under more or less standard settings, for density estimation from i.i.d. observations or to denoise data modeled as observations of a signal with additive noise. Most of these methods are fitted into the general concept of regularization with appropriately chosen penalty functions. A narrow range of applications in major areas of statistics is also discussed such as partial linear regression models and functional index models. The usefulness of all these methods are illustrated by means of simulations and practical examples.Comment: Published in at http://dx.doi.org/10.1214/07-SS014 the Statistics Surveys (http://www.i-journals.org/ss/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study

    Get PDF
    Wavelet analysis has been found to be a powerful tool for the nonparametric estimation of spatially-variable objects. We discuss in detail wavelet methods in nonparametric regression, where the data are modelled as observations of a signal contaminated with additive Gaussian noise, and provide an extensive review of the vast literature of wavelet shrinkage and wavelet thresholding estimators developed to denoise such data. These estimators arise from a wide range of classical and empirical Bayes methods treating either individual or blocks of wavelet coefficients. We compare various estimators in an extensive simulation study on a variety of sample sizes, test functions, signal-to-noise ratios and wavelet filters. Because there is no single criterion that can adequately summarise the behaviour of an estimator, we use various criteria to measure performance in finite sample situations. Insight into the performance of these estimators is obtained from graphical outputs and numerical tables. In order to provide some hints of how these estimators should be used to analyse real data sets, a detailed practical step-by-step illustration of a wavelet denoising analysis on electrical consumption is provided. Matlab codes are provided so that all figures and tables in this paper can be reproduced

    A Functional Wavelet-Kernel Approach for Continuous-time Prediction

    Get PDF
    We consider the prediction problem of a continuous-time stochastic process on an entire time-interval in terms of its recent past. The approach we adopt is based on functional kernel nonparametric regression estimation techniques where observations are segments of the observed process considered as curves. These curves are assumed to lie within a space of possibly inhomogeneous functions, and the discretized times series dataset consists of a relatively small, compared to the number of segments, number of measurements made at regular times. We thus consider only the case where an asymptotically non-increasing number of measurements is available for each portion of the times series. We estimate conditional expectations using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used in order to calibrate the prediction. Asymptotic properties when the number of segments grows to infinity are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise confidence intervals for the predicted trajectories. We illustrate the usefulness of the proposed functional wavelet-kernel methodology in finite sample situations by means of three real-life datasets that were collected from different arenas

    A Multiscale Approach for Statistical Characterization of Functional Images

    Get PDF
    Increasingly, scientific studies yield functional image data, in which the observed data consist of sets of curves recorded on the pixels of the image. Examples include temporal brain response intensities measured by fMRI and NMR frequency spectra measured at each pixel. This article presents a new methodology for improving the characterization of pixels in functional imaging, formulated as a spatial curve clustering problem. Our method operates on curves as a unit. It is nonparametric and involves multiple stages: (i) wavelet thresholding, aggregation, and Neyman truncation to effectively reduce dimensionality; (ii) clustering based on an extended EM algorithm; and (iii) multiscale penalized dyadic partitioning to create a spatial segmentation. We motivate the different stages with theoretical considerations and arguments, and illustrate the overall procedure on simulated and real datasets. Our method appears to offer substantial improvements over monoscale pixel-wise methods. An Appendix which gives some theoretical justifications of the methodology, computer code, documentation and dataset are available in the online supplements

    Peaks detection and alignment for mass spectrometry data

    Get PDF
    The goal of this paper is to review existing methods for protein mass spectrometry data analysis, and to present a new methodology for automatic extraction of significant peaks (biomarkers). For the pre-processing step required for data from MALDI-TOF or SELDI- TOF spectra, we use a purely nonparametric approach that combines stationary invariant wavelet transform for noise removal and penalized spline quantile regression for baseline correction. We further present a multi-scale spectra alignment technique that is based on identification of statistically significant peaks from a set of spectra. This method allows one to find common peaks in a set of spectra that can subsequently be mapped to individual proteins. This may serve as useful biomarkers in medical applications, or as individual features for further multidimensional statistical analysis. MALDI-TOF spectra obtained from serum samples are used throughout the paper to illustrate the methodology

    Penalized wavelet monotone regression

    Get PDF
    Abstract In this paper we focus on nonparametric estimation of a constrained regression function using penalized wavelet regression techniques. This results into a convex optimization problem under linear constraints. Necessary and sufficient conditions for existence of a unique solution are discussed. The estimator is easily obtained via the dual formulation of the optimization problem. In particular we investigate a penalized wavelet monotone regression estimator. We establish the rate of convergence of this estimator, and illustrate its finite sample performance via a simulation study. We also compare its performance with that of a recently proposed constrained estimator. An illustration to some real data is given
    corecore